Numerical Analysis of Nonlinear Eigenvalue Problems

نویسندگان

  • Eric Cancès
  • Rachida Chakir
  • Yvon Maday
چکیده

We provide a priori error estimates for variational approximations of the ground state eigenvalue and eigenvector of nonlinear elliptic eigenvalue problems of the form −div(A∇u) + V u + f(u)u = λu, ‖u‖L2 = 1. We focus in particular on the Fourier spectral approximation (for periodic problems) and on the P1 and P2 finite-element discretizations. Denoting by (uδ, λδ) a variational approximation of the ground state eigenpair (u, λ), we are interested in the convergence rates of ‖uδ − u‖H1 , ‖uδ − u‖L2 and |λδ − λ|, when the discretization parameter δ goes to zero. We prove that if A, V and f satisfy certain conditions, |λδ − λ| goes to zero as ‖uδ − u‖ 2 H1 + ‖uδ − u‖L2 . We also show that under more restrictive assumptions on A, V and f , |λδ − λ| converges to zero as ‖uδ − u‖ 2 H1 , thus recovering a standard result for linear elliptic eigenvalue problems. For the latter analysis, we make use of estimates of the error uδ − u in negative Sobolev norms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Boundary Element Methods for Laplacian Eigenvalue Problems

The aim of the book is to provide an analysis of the boundary element method for the numerical solution of Laplacian eigenvalue problems. The representation of Laplacian eigenvalue problems in the form of boundary integral equations leads to nonlinear eigenvalue problems for related boundary integral operators. The solution of boundary element discretizations of such eigenvalue problems require...

متن کامل

Chebyshev interpolation for nonlinear eigenvalue problems

This work is concerned with numerical methods for matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. In particular, we focus on eigenvalue problems for which the evaluation of the matrix valued function is computationally expensive. Such problems arise, e.g., from boundary integral formulations of elliptic PDE-eigenvalue problems and typically exclude the use of establis...

متن کامل

Solving Nonlinear Eigenvalue Problems using an Improved Newton Method

Finding approximations to the eigenvalues of nonlinear eigenvalue problems is a common problem which arises from many complex applications. In this paper, iterative algorithms for finding approximations to the eigenvalues of nonlinear eigenvalue problems are verified. These algorithms use an efficient numerical approach for calculating the first and second derivatives of the determinant of the ...

متن کامل

A New Hybrid Conjugate Gradient Method Based on Eigenvalue Analysis for Unconstrained Optimization Problems

In this paper‎, ‎two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS})‎ ‎conjugate gradient method are presented to solve unconstrained optimization problems‎. ‎A remarkable property of the proposed methods is that the search direction always satisfies‎ ‎the sufficient descent condition independent of line search method‎, ‎based on eigenvalue analysis‎. ‎The globa...

متن کامل

Solving Nonlinear Eigenvalue Problems Using A Variant of Newton Method

In this paper, iterative algorithms for finding approximations to the eigenvalues of nonlinear algebraic eigenvalue problems are examined. These algorithms use an efficient numerical procedure for calculating the first and second derivatives of the determinant of the problem. Computational aspects of this procedure as applied to finding all the eigenvalues from a given complex-plane domain in a...

متن کامل

Convergence Analysis of a Galerkin Boundary Element Method for the Dirichlet Laplacian Eigenvalue Problem

In this paper, a rigorous convergence and error analysis of a Galerkin boundary element method for the Dirichlet Laplacian eigenvalue problem is presented. The formulation of the eigenvalue problem in terms of a boundary integral equation yields a nonlinear boundary integral operator eigenvalue problem. This nonlinear eigenvalue problem and its Galerkin approximation are analyzed in the framewo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2010